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Abstract: - Current research studies have demonstrated the capability of Artificial Neural Networks (ANNs) in 

learning to generalize for solving complex industrial problems. However, hardly few such studies have been 

conducted to investigate if these ANNs are also effective in identifying energy use patterns in industrial 

processes. In this research work a resilient gradient descent variant of a multilayer neural network (MLP) is 

developed for determining steam consumption patterns as a function of production rate in textile factory.  The 

model is tested using real-time data from each steam-consuming machine’s daily production and a meter 

reading of an electrical steam boiler. Parts of these data (85%) were randomly selected in order to train the 

network. The remaining data were used to test the performance of the trained network. The result obtained 

showed an acceptable error performance index of magnitude around 0.0674. The model also gave a correlation 

coefficient (R) between the estimated and target values as 0. 9781. Thus the proposed neural network can be 

used as a valuable tool as an energy use approximator in industrial production processes. Moreover, with the 

availability of more training data, an increased prediction capability can be achieved. 

 

 

Key-Words: - Artificial Neural Networks (ANNs), multilayer neural network (MLP), resilient gradient descent 

industrial processes, steam consumption prediction.  

 

1 Introduction 
One common as well as important Artificial Neural 

Networks (ANNs) application that finds itself in 

much practical use is function approximation. 

Function approximation range from determining 

realizable feedback function that relates measured 

outputs to control input in control systems to finding 

a function that correlated past values of an input 

signal to output in adaptive filtering. Lately, 

Artificial Neural Networks (ANNs) have been used 

extensively in finding underling functional relation 

of engineering processes. This pertains to the ability 

of ANNs to predict or solve non-linear problems 

with high degree of accuracy given enough data to 

learn from. A wide variety of ANNs have been used 

with varying configuration that suits the specific 

requirements of an application. 

A widely used and efficient ANN function 

approximation is the MLP (multi-layer perceptron) 

networks based on the BP (back-propagation) 
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learning algorithm. Though researches are still 

contributing to know more about these ANNS, 

several studies have exemplified the back 

propagation learning algorithm as the forerunner 

among the Multi-layer perceptron algorithms [1-3]. 

The accuracy and convergence speed of these MLPs 

usually depend on the neural network architectural 

configuration as well as choice of tuneable 

parameters during the implementation stage. In 

previous studies, researchers have used some 

techniques to solve real applications using these 

algorithms. However hardly any examples of 

industrial processes energy consumption prediction 

from production process were done. This paper is an 

attempt to answer this question by implementing 

one of the most powerful ANNs-MLP while trying 

to consider issues relating to their practical 

application. 

Realization of perceptron concept by Rosenblatt 

in 1958 was the hallmark of ANNs. The perceptron 

unit is an individual processing unit that accepts 

weighted input and produces a rule based threshold 

output. MLP is a feed-forward ANN that is 

implemented by customizing these fundamental 

units. This customization introduced addition of 

layers of neurons and a nonlinear transfer function 

[2, 3]. 

 

2 Problem Formulation 
Energy consumption determination is perhaps the 

first crucial element in demand side energy 

management (DSM). Additionally, in integration 

process of renewables such as solar plant in 

industries, knowledge of the load is a necessary 

requirement. To achieve this, direct measurements 

of generation and consumption can be done, 

otherwise known as an energy audit. This method is 

costly and might mean persistent measurements 

under different industrial production conditions. 

Another way is to get the industrial processes 

average energy consumption from a manufacturer’s 

specification. This method, even though simple, is 

not usually practically usable. This is because, it 

does not take into account the energy utilization 

under changing scenarios such as a not nominal 

operation, changing input parameters in production 

processes, and changing behavior of machines 

through its life cycle. The last method, which is 

proposed in this study, is to use ANNs to predict 

energy use patterns under real-time changing 

production processes. This however, requires a 

substantial data and several model configuration 

trials in order to generalize well. 

This work is part of a larger project called 

“Control and Optimization of a Large-Scale Solar 

Plant in Ethiopian Textile Industry”. The aim of the 

project is primarily a smooth integration of an 

economically realizable solar plant for existing 

steam boiler’s feed water. During the course of this 

project, determining the thermal energy demand was 

deemed necessary for optimal sizing and operation 

of the solar plant. This task was difficult to achieve 

due to the absence of fund to do energy auditing. 

Neither was average thermal energy use 

determination possible since the factory was very 

old and no known specifications are available. 

These combined factors lead to the idea of 

predicting energy use patterns from other available 

related data through an ANNs. These related data 

are daily production from steam consuming 

machines and a KWh meter reading of a boiler. 

The proposed research work employs the well-

known BP algorithm for a multilayer feedforward 

neural network. Figure 1 depicts the methodology 

used. The work has taken in to consideration all 

issues pertinent in practical implementation of these 

ANNs. To this end a Matlab scrip code was written 

that incorporates all the above mentioned issues and 

arrived at acceptable performance during run-time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

2.1 Fundamentals of Artificial Neural 

Networks (ANNs) 
ANNs are defined as a collection of processing units 

with networks for interaction with each other 
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Figure 1 proposed steam consumption prediction  
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through a weighted interconnection [3]. The whole 

aim of these networks is to replicate, in a rather 

simplified manner, the workings of a human 

biological central nervous system. The performance 

of these ANNs depends, in a not clearly defined 

manner, on the number, interconnection and 

interaction of these constituent units.  

The aforementioned units are known as neurons. 

These neurons receive and give input signals to all 

other units of which they are connected.  

A neuron model is shown in Figure 2. The output 

strength from the neuron is determined from the 

function f, which itself depend on the value of 

weight (W) and bias (b) associated with each 

interconnection. The implementation process begins 

when an input is presented to the network and 

propagated through the network as an output by the 

transfer function otherwise known as activation 

function. For MLP this process goes on from neuron 

to neuron and layer by layer through the output 

layer that process and gives the final value. 

In MLP the training is implemented by examples 

prior to their usage as a useful network. This 

training attempts to iteratively adjust connection 

weights and biases using a known training data. To 

facilitate this training, the outputs from the network 

are compared to the target examples, which are 

known as the error performance index (PI). This 

error is compared and propagated back through the 

network to adjust weights and biases until an 

acceptable PI is achieved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final stage of the network implementation 

involves fixing the adaptive weights and biases 

using the last values of the training stage. The 

network then computes the output directly to give an 

estimated value for the inputs. 

 

2.1.  The MLP Architecture and the Back 

Propagation (BP) Algorithm 
The three-layer MLP network with the associated 

notation is depicted in Fig. 2.  

 For MLP the result from preceding layer 

feeds the following layer which is denoted by   

 

𝑎𝑚+1 = 𝑓𝑚+1(𝑊𝑚+1𝑎𝑚 + 𝑏𝑚+1)  
   𝑓𝑜𝑟 𝑚 = 0,1, …𝑀 − 1     (1) 

 

Where 𝑀 is the number of layers in the network. 

 

 The neurons in the first layer accept network 

inputs: 

𝑎0 = 𝑝                             (2) 
 

 The outputs of the network in the final layer 

are taken as outputs:  

 

𝑎 = 𝑎𝑀                             (3) 

 

The target and input to the network are: 

 

{𝑃1, 𝑡1}, {𝑃2, 𝑡2},… , {𝑃𝑄 , 𝑡𝑄}         (4) 

 

Where PQ and 𝑡𝑄 are input and target for the 

network respectively.  

 

The performance of the network is judged by the 

mean square error given as 

 
𝐹(𝑋) = (𝑡(𝑘) − 𝑎(𝑘))𝑇(𝑡(𝑘) − 𝑎(𝑘))

= 𝑒(𝑘)𝑇𝑒(𝑘)                                   (5) 
 

Using the steepest descent algorithm, a formulation 

for recursive learning of the network is given as  

 

𝑊𝑖,𝑗
𝑚(𝑘 + 1) = 𝑊𝑖,𝑗

𝑚(𝑘) − 𝛼
𝜕𝐹

𝜕𝑊𝑖,𝑗
𝑚             (6) 

𝑏𝑖
𝑚(𝑘 + 1) = 𝑏𝑖

𝑚(𝑘) − 𝛼
𝜕𝐹

𝜕𝑏𝑖
𝑚                  (7) 

Where 𝛼  is the learning rate. 

 

Since the above error function does not have an 

explicit relation for the weights in the hidden layer, 

use of chain rule for derivatives manipulation. The 

chain rule for a function f with explicit variable n, 

the derivative for the implicit variable w could be 

found  

 

𝑤𝑗𝑘 

Input 
layer, i 

Hidden 
layers, j 

Output 
layer, l 

Figure 2 Multi-layer neural network model 
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𝑑𝑓(𝑛(𝑤))

𝑑𝑤
=

𝑑𝑓(𝑛)

𝑑𝑛
 𝑥 

𝑑𝑛(𝑤)

𝑑𝑤
               (8) 

𝜕𝐹

𝜕𝑤𝑖,𝑗
𝑚 =

𝜕𝐹

𝜕𝑛𝑖
𝑚  𝑥 

𝜕𝑛𝑖
𝑚

𝜕𝑤𝑖,𝑗
𝑚                             (9) 

𝜕𝐹

𝜕𝑏𝑖
𝑚 =

𝜕𝐹

𝜕𝑛𝑖
𝑚  𝑥 

𝜕𝑛𝑖
𝑚

𝜕𝑏𝑖
𝑚                            (10) 

 

Calculation of the second part of the above 

equations is now straightforward because there is a 

simple relation between the net input to layer  m  

and the weights and bias in that layer: 

 

𝑛𝑖
𝑚 = ∑ 𝑤𝑖,𝑗

𝑚

𝑺𝒎−𝟏

𝑗=1

𝑎𝑗
𝑚−1 + 𝑏𝑖

𝑚                  (11) 

 

Thus 

 
𝜕𝑛𝑖

𝑚

𝜕𝑤𝑖,𝑗
𝑚 = 𝑎𝑗

𝑚−1 ,
𝜕𝑛𝑖

𝑚

𝜕𝑏𝑖
𝑚 = 1                       (12)   

 

Let’s define 

𝑆𝑖
𝑚  =

𝜕𝐹

𝜕𝑛𝑖
𝑚                                             (13) 

 

Where 𝑆𝑖
𝑚 is the sensitivity i.e. the sensitivity of F 

that is associated with variation in the ith element of 

the net input layer m. Employing this definition 

results in a simpler form for equations (9) and (10) 

which is: 

 
𝜕𝐹

𝜕𝑤𝑖,𝑗
𝑚 = 𝑆𝑖

𝑚𝑎𝑗
𝑚−1                         (14) 

𝜕𝐹

𝜕𝑏𝑖
𝑚 = 𝑆𝑖

𝑚                                     (15) 

 

Thus the steepest descent algorithm can be 

generalized as 

 

𝑊𝑖,𝑗
𝑚(𝑘 + 1) = 𝑊𝑖,𝑗

𝑚(𝑘) − 𝛼𝑆𝑖
𝑚𝑎𝑗

𝑚−1      (16) 

𝑏𝑖
𝑚(𝑘 + 1) = 𝑏𝑖

𝑚(𝑘) − 𝛼𝑆𝑖
𝑚             (17) 

 

The condensed matrix representation is given by: 

 

𝑾𝑚(𝑘 + 1) = 𝑾𝑚(𝑘) − 𝛼𝑆𝑚(𝒂𝑚−1)𝑇   (18) 

𝒃𝑚(𝑘 + 1) = 𝒃𝑚(𝑘) − 𝛼𝑆𝑚                (19) 
 

Where: 

𝑆𝑚 =
𝜕𝐹

𝜕𝑛𝑚
=

[
 
 
 
 
 
 
 
 

𝜕𝐹

𝜕𝑛1
𝑚

𝜕𝐹

𝜕𝑛2
𝑚

..

.
𝜕𝐹

𝜕𝑛𝑠𝑚
𝑚 ]

 
 
 
 
 
 
 
 

                         (20) 

 

Here also the sensitivities 𝑆𝑚 will be computed 

using the chain rule. This computation of 

sensitivities which are determined from previous 

layers gave the name backpropagation to the 

algorithm.  

Let’s now define the Jacobian matrix for 

backpropagation of the sensitivities: 

 

𝜕𝒏𝑚+1

𝜕𝒏𝑚
=

[
 
 
 
 
 
 
 
 
 
𝜕𝑛1

𝑚+1

𝜕𝑛1
𝑚

𝜕𝑛1
𝑚+1

𝜕𝑛1
𝑚 …

𝜕𝑛1
𝑚+1

𝜕𝑛1
𝑚

𝜕𝑛1
𝑚+1

𝜕𝑛1
𝑚

.

.

.

𝜕𝑛1
𝑚+1

𝜕𝑛1
𝑚

.

.

.

…
𝜕𝑛1

𝑚+1

𝜕𝑛1
𝑚

.

.

.
𝜕𝑛1

𝑚+1

𝜕𝑛1
𝑚

𝜕𝑛1
𝑚+1

𝜕𝑛1
𝑚

𝜕𝑛1
𝑚+1

𝜕𝑛1
𝑚 ]

 
 
 
 
 
 
 
 
 

 (21) 

 

Now let’s take the i, j element of the above matrix: 

 

𝜕𝑛𝑖
𝑚+1

𝜕𝑛𝑗
𝑚 =

𝜕(∑ 𝑤𝑖,𝑙
𝑚+1𝑎𝑙

𝑚 + 𝑏𝑖
𝑚+1𝑆𝑚

𝑙=1 )

𝜕𝑛𝑗
𝑚                     

= 𝑤𝑖,𝑗
𝑚+1

𝜕𝑓𝑚(𝑛𝑗
𝑚)

𝜕𝑛𝑗
𝑚  

= 𝑤𝑖,𝑗
𝑚+1�̇�𝑚(𝑛𝑗

𝑚)                       (22)  

 

where 

𝑓̇𝑚(𝑛𝑗
𝑚) =

𝜕𝑓𝑚(𝑛𝑗
𝑚)

𝜕𝑛𝑗
𝑚                       (23) 

 

Thus, the Jacobian matrix is given as: 

 

𝜕𝑛𝑚+1

𝜕𝑛𝑚
= 𝑊𝑚+1�̇�𝑚(𝑛𝑚)                  (24) 

 

Where: 
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�̇�𝑚(𝑛𝑚) =

                   

[
 
 
 
 
 
 
𝑓̇𝑚(𝑛𝑗

𝑚) 0 …0

0 𝑓̇𝑚(𝑛𝑗
𝑚) …0

. . .

. . .

. . .
0 0 𝑓̇𝑚(𝑛𝑗

𝑚)]
 
 
 
 
 
 

  (25)             

 

Finally using the chain rule the sensitivities can be 

given as: 

𝑆𝑚 =
𝜕𝐹

𝜕𝑛𝑚
= (

𝜕𝑛𝑚+1

𝜕𝑛𝑚 )

𝑇
𝜕𝐹

𝜕𝑛𝑚+1
 

= �̇�𝑚(𝑛𝑚)(𝑊𝑚+1)𝑇
𝜕𝐹

𝜕𝑛𝑚+1
 

= �̇�𝑚(𝑛𝑚)(𝑊𝑚+1)𝑇𝑠𝑚+1        (26) 

 

These sensitivities are propagated backward layer 

by layer till the input layer as: 

𝑆𝑀 → 𝑆𝑀−1 → ⋯ → 𝑆2 → 𝑆1 
 

2.2.1 Resilient Gradient algorithm 

Although the BP algorithm is the best among the 

MLP networks, in its basic form it has two major 

limitations-long learning time and possibility of 

local minima [1, 3-5]. Thus a variant of the basic BP 

algorithm known resilient gradient method which is 

known to remove these drawbacks is utilized. [4, 5] 

In this algorithm, only the sign of derivative is 

used to determine the weight update value. The 

implementation of this algorithm follows the 

following rule:  

a)  If the partial derivative of the corresponding 

weight has the same sign for the two 

consecutive iterations, the weight update is 

increased by a factor say, ɳ+ otherwise  

b) the weight update value is decreased by a factor 

ɳ- else  

c) if the derivative is zero, then the weight update 

value remains same.  

d) However, if the weight continues to change in 

the same direction for several iterations, the 

weight is increased by its update value 

otherwise the update value is reduced.  

 

 

2.3 Implementation of BP Algorithm for 

steam -consumption prediction 

The diagram in Figure 4 depicts the ANNs training 

procedure followed. This procedure is a continuous 

iterative process starting from data collection and 

preprocessing stage to achieve more efficient neural 

network training. While at this first step, the data 

were partitioned into training and testing sets. 

Following this, selection of suitable network type 

and architecture (e.g., number of hidden layers, 

number of nodes in these layers) were done. Then 

choice of appropriate training algorithm from the 

multitude of available paradigms were carried out to 

handles the task.  Finally, once the ANNs is trained, 

analysis to determine the network performance was 

done. This last stage has dealt with some practical 

issues with the data, the network architecture, and 

the training algorithm. The whole procedure is then 

iterated until an acceptable performance is achieved.  

 

 

2.3.1 Pre-Training Steps 

The pre-training steps comprises three separate tasks 

namely data collection, data Preprocessing, and 

choice of Network type and architecture. 

 

 

2.3.1.1 Data Collection 

Input data which are actual daily production from all 

steam consuming machines were collected for the 

year 2016 in Bahir Dar textile factory. Parts of these 

data are shown in Figure 3 for first week of August 

2016. Further, daily total steam production from an 

electrical boiler (Collins Walker) was used as an 

output Data. The existing steam electrical boiler 

with its specification is given in Table 1. Meter 

readings for the same year and day as the input data 

were also recorded. Figure 2, depicts these meter 

readings for the same days of August 2016. 

 

2.3.1.2 Data pre-processing 

The aim of this step is to lay a conducive ground for 

better network training. Though several data pre-

processing steps exit in the literature, this work used 

feature extraction, normalization, and handling of 

missing data.  

The available data for the ANNs output are meter 

reading of an electrical boiler. These data show the 

total electrical energy (KWh) consumed by the 

boiler. To make these data useful a manipulation to 

get the total steam delivered at the premises of the 

steam-consuming machines is done. The procedure 

is explained as follows: 

 

The total steam delivered at the steam-

consuming machines is given by  

 

𝑆𝐵 = 𝑆𝑀 + 𝑆𝑙𝑜𝑠𝑠           (28) 
 

Where 𝑆𝑀 is the steam delivered, 𝑆𝐵 is the total 

boiler steam produced and 𝑆𝑙𝑜𝑠𝑠 is the steam 

transmission loss 
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The total daily steam produced by the boiler can be 

determined from 

 

𝑆𝐵 = 𝑏𝑥
𝐵𝐾𝑊ℎ

𝐵𝐾𝑊
          (29) 

 

Table 1: Production rate vs boiler meter reading 

 

Where 𝐵𝐾𝑊ℎ is the daily electrical energy consumed 

by boiler, 𝐵𝐾𝑊 is the rated boiler power that relates 

to boiler steam production b in Kg as given in boiler 

specification Table 1.  

Table 1 Boiler specification 

Specification Description Specification Value 

Name and Type COLLINE, electrical 

boiler 

Permissible & working pres. 13 bar, 10.3 bar 

Design & Max Steam temp. 190oC, 184oC 

Rated steam output 3348Kg/hr./boiler 

Power consumption  2106KW/boiler 

 

The steam loss could range from 5-20% of the 

steam produced [6]. In the current model, a 

stochastic representation of this loss as a uniform 

distribution of the minimum and maximum values 

was used. This was done to reduce the uncertainty 

of quantifying the steam loss in the several varying 

steam distribution networks.  

  

 
Figure 3 Daily production rates from steam 

consuming machine, 1st week, 2006 

 
It is reported in [7-8] that rescaling or normalization 

of training data improves the learning and 

convergence of a network. The normalization 

procedure used in this work aims to adjust the data 

so that they have a specified mean and variance — 

typically 0 and 1. This can be done with the 

transformation 

 

𝐷𝑛 =
𝐷 − 𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥  − 𝐷𝑚𝑖𝑛
       (30) 

 

where 𝐷𝑚𝑖𝑛 is the minimum of the input vectors in 

the data set, and 𝐷𝑚𝑎𝑥 is the maximum value. 

Practically what this normalization does is to shift 

zero of the scale and normalize the standard 

deviation of the data. Also shuffling of these data 

were done to decrease the effect of learning of the 

network for similar sets of data at the expense of 

another. 

Because of limited data, we just can’t afford to 

simply throw out missing data. Rather, two 

strategies were used depending on whether the 

missing data was from input or output. When there 

was a missing input data, a flag to know this data 

(either a 1 or 0) were set and a replacement of this 

missing component with the average values of the 

input data were carried out. Instead when a missing 

data was present at the output a modification of the 

error performance was done in such a way that, for 

this particular data the performance calculation was 

skipped to nullify its contribution to learning 

process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, the collected data was divided in to two 

sets: training, and testing. The training set made up 
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85% of the full data set, with testing making up the 

remaining 15% each. Caution to make each of these 

sets representative of the full data set — that the test 

sets cover the same region of the input space as the 

training set were considered. For this, selections of 

each set from the full data set were done. 

 
2.3.2 Choice of Network Architecture 

The universally accepted network architecture for 

fitting problems is the multilayer perceptron [1-3]. It 

was shown in [3] that this standard neural 

configuration uses tansig function in the hidden 

layers, and linear function in the output layer. This 

is because the former function produces outputs 

(which are inputs to the next layer) that are centered 

near zero, whereas the later function always 

produces positive outputs. 

 The choice of the optimum number of hidden 

units depends on many factors whose interactions 

are not easy to understand. These factors are amount 

of training data, number of input and output units, 

the level of generalization requirement from the 

network, type of transfer function and the training 

algorithm [9]. Conflicting trends are observed when 

the number of hidden units vary i.e. too few leads to 

under-fitting while too many results in over-fitting 

and slow learning process. However, it is highly 

unlikely to use more than two hidden layers for a 

standard function approximation problem [3].  

 To fix the number of neuron in the hidden 

layer, different authors suggest a rule-of thumb from 

their experiences. In [10] it is given as 

𝑛 = √𝑛𝑖 + 𝑛𝑜 + 𝑎            (31) 

Where n is the number of hidden neurons, 𝑛𝑖 and 𝑛𝑜 

are number of neurons in input and output and a is a 

constant between 1 and 10.  

 Another work [11] suggested to use 

𝑁ℎ = 𝑁𝑝𝑥√(𝑁𝑖 + 𝑁𝑜)         (32) 

Where 𝑁ℎ is hidden neuron numbers, 𝑁𝑝 is number 

of training samples, 𝑁𝑖&𝑁𝑜 are input and output 

neurons. 

 The authors strongly believe that the best way is 

to try multiple runs for a range of different hidden 

layers with different neurons in each layer and 

observe the network performance. For the current 

work, two hidden layers with ten neurons in each 

layer achieved the set performance criterion. 

 

2.3.3 Weight Initialization 

ANNs weights should be initialized with small 

random values. Since the BP algorithm work on the 

weights in a similar fashion, initializing these 

weights alike will eventually make all units learn in 

the same way [12-14]. Similarly, these small 

random values will result in network output that 

corresponds to highest weight update [13]. In this 

work, effort has been made to make the 

performance of the final trained neural network 

independent of the choice of initial weight values. 

For that several runs of the network for different 

initial weight values were performed that has 

resulted in similar performance. 

 

2.3.4 Choice of Training Algorithm 

For multilayer networks to perform function 

approximation, the resilient gradient descent 

training algorithm provides a guaranteed 

performance minimization of the error function with 

relatively fast convergence rate [4, 14, 16]. In this 

work, this algorithm was tested to check its validity 

for the task at hand. 

 

2.3.5 Stopping Criteria 

For the majority of practical neural networks, the 

training error never converges identically to zero.  

As a result, other criteria for deciding when to stop 

the training is generally considered. There are 

several methods reported in the literature such as 

stooping when the performance index reaches a 

certain level, setting a high training iteration 

number, training for a fixed iteration then restarting 

the training with initial weights from previous 

training and stopping when the gradient of the 

performance index is sufficiently low [17-18]. For 

this work a stopping criterion when either the 

performance index is met or when a large number of 

iteration reached is implemented for the simple 

reason it met the practical requirement of the task. 

 

2.3.6 Post-Training Analysis 

Prior to concluding the work, analysis of the trained 

network to see if the training was successful is 

necessary. A powerful method of doing this is to do 

curve fitting for regression between the trained 

network outputs and the corresponding targets [3].  

For that, we fit a linear function of the form  

 

𝑎𝑞 = 𝑚𝑡𝑞 + 𝑐 + 𝜀𝑞     (33) 

 

where m & c  are the slope & offset, respectively, of 

the linear function, 𝑡𝑞is a target value, 𝑎𝑞 is a 

trained network output, and 𝜀𝑞 is the residual error 

of the regression. 

The terms in the regression can be computed as 

follows: 
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�̂� =
∑ (𝑡𝑞 − 𝑡̅)

𝑄
𝑞=1 (𝑎𝑞 − �̅�)

∑ (𝑡𝑞 − 𝑡̅)
2𝑄

𝑞=1

        (34) 

 

   �̂� = �̅� − �̂�𝑡̅             (35) 

Where,    

    �̅� =
1

𝑄
∑ 𝑎𝑞 ,         𝑡̅ =

1

𝑄
∑ 𝑡𝑞

𝑄
𝑞=1

𝑄
𝑞=1  

 

 A plot of this fitting to gauge the performance 

of the proposed ANNs is discussed in the results 

section. 

 

3 Results and Discussions 
A Matlab script file for the implementation of 

resilient gradient variant of the BP algorithm were 

written. This code was run for different learning 

rates and varying number of hidden neurons. The 

regression coefficient (R) and Mean Square Error 

(MSE) were compared. As can be seen from Figure 

5 the resilient gradient method shows superior 

performance as the complexity of the neural 

network increase.  

 
(a) 

 
(b) 

Figure 5 effect of learning rate and neuron 

number variation on (a) correlation and; (b) 

mean square error 

Next we will consider performance of the best 

resilient configuration. Figure 6 shows the 

regression analysis where the solid line represents 

the linear regression, the thin dotted line represents 

the perfect match, and the circles represent the data 

points.  From this figure it is possible to see that the 

match is good, although not perfect. There are few 

points that seem to diverge from the regressed line. 

This might rise due to the presence of an incorrect 

data point, or because the data is far from other 

training points. The latter is the case here since the 

data used is not representative of all input space. 

Analysis of the scatter plot as shown in Figure 7 

clearly shows the case. 

Addition of points that span the whole data space 

will improve the generalization capability of the 

proposed neural network. Additionally, the 

correlation coefficient between the estimated and 

target values, which is the R value was computed. 

Generally, the R value varies from –1 to 1, however 

it is should be closer to 1 for prediction applications 

of BP algorithm. R=1 means all of the data points 

lie exactly on the regression line & R=-1 means they 

are randomly scattered away from the regression 

line. For this case as can be seen from Figure 6, the 

data does not fall exactly on the regression line, but 

the variation is very small. 
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Figure 6 Correlation factor for the optimum 

neural model 
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Figure 7 scatter plot of the training data and the 

steam consumption 

 

The MSE values for the best network 

configuration are given in Figure 8. As can be seen 

from this figure, the error overshoot at the start of 

the training and subsequently receded to a stable 

lower value. As stated in section 2, the stopping 

criterion was based on the mean square error that 

minimized the actual target and output of the 

network. Although the neural model achieved a 

relatively minimum values around 300 iteration, 

further increment was done to get better result with 

the correlation coefficient. This trade-off is 

considered acceptable since the overall neural model 

error is significantly low about 0.0674. 

Figure 9 gives the final trained neural network 

output after a test data was presented. The variation 

of neural output is due to variation of daily 

production rates of steam consuming machines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 summarizes the final result i.e. the steam 

consumption rate of each textile machine. For this 

the average production value of the machine is 

presented to the network as input. The output value 

is given in a range because of the random stochastic 

nature of steam loss and weight initialization used. 

 
Figure 9 output of trained neural model using 

test data  

Table 2 final steam consumption estimates 

Industrial process Steam consumption (kg/kg) 

Bleaching 0.6-0.9 

Washing 0.7-1.1 

Calendaring 0.8-1.4 

Jigger 1.2-4.5 

Sizing 7.8-9.0 

 

4 Conclusion 
In this research paper, effort has been made to 

estimate industrial steam consumption form 

machines daily production rates and boiler meter 

reading. The neural algorithm used is explained in 

detail with the associated practical issues of 

implementation. Several simulations run was carried 

out in Matlab to arrive at an optimum neural 

configuration. Finally real textile factory data was 

used for training and test of this final optimized 

neural model. 

From the simulation results of a Matlab code 

implementation, it was found out that the resilient 

gradient descent algorithm of an MLP is a valuable 

tool for function approximation such as energy use 

prediction. However, practical considerations that 

relates to pre-processing as well as selection of 

representative input data were found to be a 

prerequisite before implementation.  

Moreover, it was found out that the number of 

layers and the amount of neurons in those layers has 

a direct influence on the accuracy of the network. 

From the experiment it was found out that two 

hidden layers and hundred neurons on those layers 

has resulted in best performance of the network. 

However, the number of neurons in a layer could be 

reduced with the availability of more data to train 

the network. 
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