
Industrial process steam consumption prediction through an Artificial

Neural Networks (ANNs) approach

FITSUM BEKELE TILAHUN

Renewable Energy Systems

ITT, TH Köln (Cologne University of Applied Science)

Betzdorfer Strasse 2, 50679 Köln

GERMANY

ftsebeek@gmail.com www.amu.edu.et

RAMCHANDRA BHANDARI

Renewable Energy Systems

ITT, TH Köln (Cologne University of Applied Science)

Betzdorfer Strasse 2, 50679 Köln

GERMANY

ramchandra.bhandari@th-koeln.de www.th-koeln.de

MENEGESHA MAMO

Electrical & Computer Engineering

Addis Ababa University Institute of Technology (AAIT)

King George VI Street, Addis Ababa

ETHIOPIA

menegesha.mamo@aau.edu.et www.aait.edu.et

Abstract: - Current research studies have demonstrated the capability of Artificial Neural Networks (ANNs) in

learning to generalize for solving complex industrial problems. However, hardly few such studies have been

conducted to investigate if these ANNs are also effective in identifying energy use patterns in industrial

processes. In this research work a resilient gradient descent variant of a multilayer neural network (MLP) is

developed for determining steam consumption patterns as a function of production rate in textile factory. The

model is tested using real-time data from each steam-consuming machine’s daily production and a meter

reading of an electrical steam boiler. Parts of these data (85%) were randomly selected in order to train the

network. The remaining data were used to test the performance of the trained network. The result obtained

showed an acceptable error performance index of magnitude around 0.0674. The model also gave a correlation

coefficient (R) between the estimated and target values as 0. 9781. Thus the proposed neural network can be

used as a valuable tool as an energy use approximator in industrial production processes. Moreover, with the

availability of more training data, an increased prediction capability can be achieved.

Key-Words: - Artificial Neural Networks (ANNs), multilayer neural network (MLP), resilient gradient descent

industrial processes, steam consumption prediction.

1 Introduction
One common as well as important Artificial Neural

Networks (ANNs) application that finds itself in

much practical use is function approximation.

Function approximation range from determining

realizable feedback function that relates measured

outputs to control input in control systems to finding

a function that correlated past values of an input

signal to output in adaptive filtering. Lately,

Artificial Neural Networks (ANNs) have been used

extensively in finding underling functional relation

of engineering processes. This pertains to the ability

of ANNs to predict or solve non-linear problems

with high degree of accuracy given enough data to

learn from. A wide variety of ANNs have been used

with varying configuration that suits the specific

requirements of an application.

A widely used and efficient ANN function

approximation is the MLP (multi-layer perceptron)

networks based on the BP (back-propagation)

WSEAS TRANSACTIONS on POWER SYSTEMS
Fitsum Bekele Tilahun,

Ramchandra Bhandari, Menegesha Mamo

E-ISSN: 2224-350X 238 Volume 12, 2017

mailto:ftsebeek@gmail.com
http://www.amu.edu.et/
mailto:ramchandra.bhandari@th-koeln.de
http://www.th-koeln.de/
mailto:menegesha.mamo@aau.edu.et
http://www.aait.edu.et/

learning algorithm. Though researches are still

contributing to know more about these ANNS,

several studies have exemplified the back

propagation learning algorithm as the forerunner

among the Multi-layer perceptron algorithms [1-3].

The accuracy and convergence speed of these MLPs

usually depend on the neural network architectural

configuration as well as choice of tuneable

parameters during the implementation stage. In

previous studies, researchers have used some

techniques to solve real applications using these

algorithms. However hardly any examples of

industrial processes energy consumption prediction

from production process were done. This paper is an

attempt to answer this question by implementing

one of the most powerful ANNs-MLP while trying

to consider issues relating to their practical

application.

Realization of perceptron concept by Rosenblatt

in 1958 was the hallmark of ANNs. The perceptron

unit is an individual processing unit that accepts

weighted input and produces a rule based threshold

output. MLP is a feed-forward ANN that is

implemented by customizing these fundamental

units. This customization introduced addition of

layers of neurons and a nonlinear transfer function

[2, 3].

2 Problem Formulation
Energy consumption determination is perhaps the

first crucial element in demand side energy

management (DSM). Additionally, in integration

process of renewables such as solar plant in

industries, knowledge of the load is a necessary

requirement. To achieve this, direct measurements

of generation and consumption can be done,

otherwise known as an energy audit. This method is

costly and might mean persistent measurements

under different industrial production conditions.

Another way is to get the industrial processes

average energy consumption from a manufacturer’s

specification. This method, even though simple, is

not usually practically usable. This is because, it

does not take into account the energy utilization

under changing scenarios such as a not nominal

operation, changing input parameters in production

processes, and changing behavior of machines

through its life cycle. The last method, which is

proposed in this study, is to use ANNs to predict

energy use patterns under real-time changing

production processes. This however, requires a

substantial data and several model configuration

trials in order to generalize well.

This work is part of a larger project called

“Control and Optimization of a Large-Scale Solar

Plant in Ethiopian Textile Industry”. The aim of the

project is primarily a smooth integration of an

economically realizable solar plant for existing

steam boiler’s feed water. During the course of this

project, determining the thermal energy demand was

deemed necessary for optimal sizing and operation

of the solar plant. This task was difficult to achieve

due to the absence of fund to do energy auditing.

Neither was average thermal energy use

determination possible since the factory was very

old and no known specifications are available.

These combined factors lead to the idea of

predicting energy use patterns from other available

related data through an ANNs. These related data

are daily production from steam consuming

machines and a KWh meter reading of a boiler.

The proposed research work employs the well-

known BP algorithm for a multilayer feedforward

neural network. Figure 1 depicts the methodology

used. The work has taken in to consideration all

issues pertinent in practical implementation of these

ANNs. To this end a Matlab scrip code was written

that incorporates all the above mentioned issues and

arrived at acceptable performance during run-time.

2.1 Fundamentals of Artificial Neural

Networks (ANNs)
ANNs are defined as a collection of processing units

with networks for interaction with each other

Input Data Data pre-processing

 Data conditioning

 Data normalization

 Noise treatment

Test data

(15%)

Training data

(85%)

Validating

forecasting

model

Predicted

training

& test data

performance

Learned

forecasting

model

Training

forecasting

model

Daily prod

Energy meter

Boiler

specification

Steam dis.

loss

Figure 1 proposed steam consumption prediction

WSEAS TRANSACTIONS on POWER SYSTEMS
Fitsum Bekele Tilahun,

Ramchandra Bhandari, Menegesha Mamo

E-ISSN: 2224-350X 239 Volume 12, 2017

through a weighted interconnection [3]. The whole

aim of these networks is to replicate, in a rather

simplified manner, the workings of a human

biological central nervous system. The performance

of these ANNs depends, in a not clearly defined

manner, on the number, interconnection and

interaction of these constituent units.

The aforementioned units are known as neurons.

These neurons receive and give input signals to all

other units of which they are connected.

A neuron model is shown in Figure 2. The output

strength from the neuron is determined from the

function f, which itself depend on the value of

weight (W) and bias (b) associated with each

interconnection. The implementation process begins

when an input is presented to the network and

propagated through the network as an output by the

transfer function otherwise known as activation

function. For MLP this process goes on from neuron

to neuron and layer by layer through the output

layer that process and gives the final value.

In MLP the training is implemented by examples

prior to their usage as a useful network. This

training attempts to iteratively adjust connection

weights and biases using a known training data. To

facilitate this training, the outputs from the network

are compared to the target examples, which are

known as the error performance index (PI). This

error is compared and propagated back through the

network to adjust weights and biases until an

acceptable PI is achieved.

The final stage of the network implementation

involves fixing the adaptive weights and biases

using the last values of the training stage. The

network then computes the output directly to give an

estimated value for the inputs.

2.1. The MLP Architecture and the Back

Propagation (BP) Algorithm
The three-layer MLP network with the associated

notation is depicted in Fig. 2.

 For MLP the result from preceding layer

feeds the following layer which is denoted by

𝑎𝑚+1 = 𝑓𝑚+1(𝑊𝑚+1𝑎𝑚 + 𝑏𝑚+1)
 𝑓𝑜𝑟 𝑚 = 0,1, …𝑀 − 1 (1)

Where 𝑀 is the number of layers in the network.

 The neurons in the first layer accept network

inputs:

𝑎0 = 𝑝 (2)

 The outputs of the network in the final layer

are taken as outputs:

𝑎 = 𝑎𝑀 (3)

The target and input to the network are:

{𝑃1, 𝑡1}, {𝑃2, 𝑡2},… , {𝑃𝑄 , 𝑡𝑄} (4)

Where PQ and 𝑡𝑄 are input and target for the

network respectively.

The performance of the network is judged by the

mean square error given as

𝐹(𝑋) = (𝑡(𝑘) − 𝑎(𝑘))𝑇(𝑡(𝑘) − 𝑎(𝑘))

= 𝑒(𝑘)𝑇𝑒(𝑘) (5)

Using the steepest descent algorithm, a formulation

for recursive learning of the network is given as

𝑊𝑖,𝑗
𝑚(𝑘 + 1) = 𝑊𝑖,𝑗

𝑚(𝑘) − 𝛼
𝜕𝐹

𝜕𝑊𝑖,𝑗
𝑚 (6)

𝑏𝑖
𝑚(𝑘 + 1) = 𝑏𝑖

𝑚(𝑘) − 𝛼
𝜕𝐹

𝜕𝑏𝑖
𝑚 (7)

Where 𝛼 is the learning rate.

Since the above error function does not have an

explicit relation for the weights in the hidden layer,

use of chain rule for derivatives manipulation. The

chain rule for a function f with explicit variable n,

the derivative for the implicit variable w could be

found

𝑤𝑗𝑘

Input
layer, i

Hidden
layers, j

Output
layer, l

Figure 2 Multi-layer neural network model

WSEAS TRANSACTIONS on POWER SYSTEMS
Fitsum Bekele Tilahun,

Ramchandra Bhandari, Menegesha Mamo

E-ISSN: 2224-350X 240 Volume 12, 2017

𝑑𝑓(𝑛(𝑤))

𝑑𝑤
=

𝑑𝑓(𝑛)

𝑑𝑛
 𝑥

𝑑𝑛(𝑤)

𝑑𝑤
 (8)

𝜕𝐹

𝜕𝑤𝑖,𝑗
𝑚 =

𝜕𝐹

𝜕𝑛𝑖
𝑚 𝑥

𝜕𝑛𝑖
𝑚

𝜕𝑤𝑖,𝑗
𝑚 (9)

𝜕𝐹

𝜕𝑏𝑖
𝑚 =

𝜕𝐹

𝜕𝑛𝑖
𝑚 𝑥

𝜕𝑛𝑖
𝑚

𝜕𝑏𝑖
𝑚 (10)

Calculation of the second part of the above

equations is now straightforward because there is a

simple relation between the net input to layer m

and the weights and bias in that layer:

𝑛𝑖
𝑚 = ∑ 𝑤𝑖,𝑗

𝑚

𝑺𝒎−𝟏

𝑗=1

𝑎𝑗
𝑚−1 + 𝑏𝑖

𝑚 (11)

Thus

𝜕𝑛𝑖

𝑚

𝜕𝑤𝑖,𝑗
𝑚 = 𝑎𝑗

𝑚−1 ,
𝜕𝑛𝑖

𝑚

𝜕𝑏𝑖
𝑚 = 1 (12)

Let’s define

𝑆𝑖
𝑚 =

𝜕𝐹

𝜕𝑛𝑖
𝑚 (13)

Where 𝑆𝑖
𝑚 is the sensitivity i.e. the sensitivity of F

that is associated with variation in the ith element of

the net input layer m. Employing this definition

results in a simpler form for equations (9) and (10)

which is:

𝜕𝐹

𝜕𝑤𝑖,𝑗
𝑚 = 𝑆𝑖

𝑚𝑎𝑗
𝑚−1 (14)

𝜕𝐹

𝜕𝑏𝑖
𝑚 = 𝑆𝑖

𝑚 (15)

Thus the steepest descent algorithm can be

generalized as

𝑊𝑖,𝑗
𝑚(𝑘 + 1) = 𝑊𝑖,𝑗

𝑚(𝑘) − 𝛼𝑆𝑖
𝑚𝑎𝑗

𝑚−1 (16)

𝑏𝑖
𝑚(𝑘 + 1) = 𝑏𝑖

𝑚(𝑘) − 𝛼𝑆𝑖
𝑚 (17)

The condensed matrix representation is given by:

𝑾𝑚(𝑘 + 1) = 𝑾𝑚(𝑘) − 𝛼𝑆𝑚(𝒂𝑚−1)𝑇 (18)

𝒃𝑚(𝑘 + 1) = 𝒃𝑚(𝑘) − 𝛼𝑆𝑚 (19)

Where:

𝑆𝑚 =
𝜕𝐹

𝜕𝑛𝑚
=

[

𝜕𝐹

𝜕𝑛1
𝑚

𝜕𝐹

𝜕𝑛2
𝑚

..

.
𝜕𝐹

𝜕𝑛𝑠𝑚
𝑚]

 (20)

Here also the sensitivities 𝑆𝑚 will be computed

using the chain rule. This computation of

sensitivities which are determined from previous

layers gave the name backpropagation to the

algorithm.

Let’s now define the Jacobian matrix for

backpropagation of the sensitivities:

𝜕𝒏𝑚+1

𝜕𝒏𝑚
=

[

𝜕𝑛1

𝑚+1

𝜕𝑛1
𝑚

𝜕𝑛1
𝑚+1

𝜕𝑛1
𝑚 …

𝜕𝑛1
𝑚+1

𝜕𝑛1
𝑚

𝜕𝑛1
𝑚+1

𝜕𝑛1
𝑚

.

.

.

𝜕𝑛1
𝑚+1

𝜕𝑛1
𝑚

.

.

.

…
𝜕𝑛1

𝑚+1

𝜕𝑛1
𝑚

.

.

.
𝜕𝑛1

𝑚+1

𝜕𝑛1
𝑚

𝜕𝑛1
𝑚+1

𝜕𝑛1
𝑚

𝜕𝑛1
𝑚+1

𝜕𝑛1
𝑚]

 (21)

Now let’s take the i, j element of the above matrix:

𝜕𝑛𝑖
𝑚+1

𝜕𝑛𝑗
𝑚 =

𝜕(∑ 𝑤𝑖,𝑙
𝑚+1𝑎𝑙

𝑚 + 𝑏𝑖
𝑚+1𝑆𝑚

𝑙=1)

𝜕𝑛𝑗
𝑚

= 𝑤𝑖,𝑗
𝑚+1

𝜕𝑓𝑚(𝑛𝑗
𝑚)

𝜕𝑛𝑗
𝑚

= 𝑤𝑖,𝑗
𝑚+1�̇�𝑚(𝑛𝑗

𝑚) (22)

where

𝑓̇𝑚(𝑛𝑗
𝑚) =

𝜕𝑓𝑚(𝑛𝑗
𝑚)

𝜕𝑛𝑗
𝑚 (23)

Thus, the Jacobian matrix is given as:

𝜕𝑛𝑚+1

𝜕𝑛𝑚
= 𝑊𝑚+1�̇�𝑚(𝑛𝑚) (24)

Where:

WSEAS TRANSACTIONS on POWER SYSTEMS
Fitsum Bekele Tilahun,

Ramchandra Bhandari, Menegesha Mamo

E-ISSN: 2224-350X 241 Volume 12, 2017

�̇�𝑚(𝑛𝑚) =

[

𝑓̇𝑚(𝑛𝑗

𝑚) 0 …0

0 𝑓̇𝑚(𝑛𝑗
𝑚) …0

. . .

. . .

. . .
0 0 𝑓̇𝑚(𝑛𝑗

𝑚)]

 (25)

Finally using the chain rule the sensitivities can be

given as:

𝑆𝑚 =
𝜕𝐹

𝜕𝑛𝑚
= (

𝜕𝑛𝑚+1

𝜕𝑛𝑚)

𝑇
𝜕𝐹

𝜕𝑛𝑚+1

= �̇�𝑚(𝑛𝑚)(𝑊𝑚+1)𝑇
𝜕𝐹

𝜕𝑛𝑚+1

= �̇�𝑚(𝑛𝑚)(𝑊𝑚+1)𝑇𝑠𝑚+1 (26)

These sensitivities are propagated backward layer

by layer till the input layer as:

𝑆𝑀 → 𝑆𝑀−1 → ⋯ → 𝑆2 → 𝑆1

2.2.1 Resilient Gradient algorithm

Although the BP algorithm is the best among the

MLP networks, in its basic form it has two major

limitations-long learning time and possibility of

local minima [1, 3-5]. Thus a variant of the basic BP

algorithm known resilient gradient method which is

known to remove these drawbacks is utilized. [4, 5]

In this algorithm, only the sign of derivative is

used to determine the weight update value. The

implementation of this algorithm follows the

following rule:

a) If the partial derivative of the corresponding

weight has the same sign for the two

consecutive iterations, the weight update is

increased by a factor say, ɳ+ otherwise

b) the weight update value is decreased by a factor

ɳ- else

c) if the derivative is zero, then the weight update

value remains same.

d) However, if the weight continues to change in

the same direction for several iterations, the

weight is increased by its update value

otherwise the update value is reduced.

2.3 Implementation of BP Algorithm for

steam -consumption prediction

The diagram in Figure 4 depicts the ANNs training

procedure followed. This procedure is a continuous

iterative process starting from data collection and

preprocessing stage to achieve more efficient neural

network training. While at this first step, the data

were partitioned into training and testing sets.

Following this, selection of suitable network type

and architecture (e.g., number of hidden layers,

number of nodes in these layers) were done. Then

choice of appropriate training algorithm from the

multitude of available paradigms were carried out to

handles the task. Finally, once the ANNs is trained,

analysis to determine the network performance was

done. This last stage has dealt with some practical

issues with the data, the network architecture, and

the training algorithm. The whole procedure is then

iterated until an acceptable performance is achieved.

2.3.1 Pre-Training Steps

The pre-training steps comprises three separate tasks

namely data collection, data Preprocessing, and

choice of Network type and architecture.

2.3.1.1 Data Collection

Input data which are actual daily production from all

steam consuming machines were collected for the

year 2016 in Bahir Dar textile factory. Parts of these

data are shown in Figure 3 for first week of August

2016. Further, daily total steam production from an

electrical boiler (Collins Walker) was used as an

output Data. The existing steam electrical boiler

with its specification is given in Table 1. Meter

readings for the same year and day as the input data

were also recorded. Figure 2, depicts these meter

readings for the same days of August 2016.

2.3.1.2 Data pre-processing

The aim of this step is to lay a conducive ground for

better network training. Though several data pre-

processing steps exit in the literature, this work used

feature extraction, normalization, and handling of

missing data.

The available data for the ANNs output are meter

reading of an electrical boiler. These data show the

total electrical energy (KWh) consumed by the

boiler. To make these data useful a manipulation to

get the total steam delivered at the premises of the

steam-consuming machines is done. The procedure

is explained as follows:

The total steam delivered at the steam-

consuming machines is given by

𝑆𝐵 = 𝑆𝑀 + 𝑆𝑙𝑜𝑠𝑠 (28)

Where 𝑆𝑀 is the steam delivered, 𝑆𝐵 is the total

boiler steam produced and 𝑆𝑙𝑜𝑠𝑠 is the steam

transmission loss

WSEAS TRANSACTIONS on POWER SYSTEMS
Fitsum Bekele Tilahun,

Ramchandra Bhandari, Menegesha Mamo

E-ISSN: 2224-350X 242 Volume 12, 2017

The total daily steam produced by the boiler can be

determined from

𝑆𝐵 = 𝑏𝑥
𝐵𝐾𝑊ℎ

𝐵𝐾𝑊
 (29)

Table 1: Production rate vs boiler meter reading

Where 𝐵𝐾𝑊ℎ is the daily electrical energy consumed

by boiler, 𝐵𝐾𝑊 is the rated boiler power that relates

to boiler steam production b in Kg as given in boiler

specification Table 1.

Table 1 Boiler specification

Specification Description Specification Value

Name and Type COLLINE, electrical

boiler

Permissible & working pres. 13 bar, 10.3 bar

Design & Max Steam temp. 190oC, 184oC

Rated steam output 3348Kg/hr./boiler

Power consumption 2106KW/boiler

The steam loss could range from 5-20% of the

steam produced [6]. In the current model, a

stochastic representation of this loss as a uniform

distribution of the minimum and maximum values

was used. This was done to reduce the uncertainty

of quantifying the steam loss in the several varying

steam distribution networks.

Figure 3 Daily production rates from steam

consuming machine, 1st week, 2006

It is reported in [7-8] that rescaling or normalization

of training data improves the learning and

convergence of a network. The normalization

procedure used in this work aims to adjust the data

so that they have a specified mean and variance —

typically 0 and 1. This can be done with the

transformation

𝐷𝑛 =
𝐷 − 𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛
 (30)

where 𝐷𝑚𝑖𝑛 is the minimum of the input vectors in

the data set, and 𝐷𝑚𝑎𝑥 is the maximum value.

Practically what this normalization does is to shift

zero of the scale and normalize the standard

deviation of the data. Also shuffling of these data

were done to decrease the effect of learning of the

network for similar sets of data at the expense of

another.

Because of limited data, we just can’t afford to

simply throw out missing data. Rather, two

strategies were used depending on whether the

missing data was from input or output. When there

was a missing input data, a flag to know this data

(either a 1 or 0) were set and a replacement of this

missing component with the average values of the

input data were carried out. Instead when a missing

data was present at the output a modification of the

error performance was done in such a way that, for

this particular data the performance calculation was

skipped to nullify its contribution to learning

process.

Finally, the collected data was divided in to two

sets: training, and testing. The training set made up

0.0

0.1

0.1

0.2

0.2

0.3

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7

N
o

rm
al

iz
ed

 b
o

ile
r

K
W

h

N
o

rm
al

iz
ed

 p
ro

d
u

ct
io

n
 r

at
e

Day
Bleach Wash Calender
Size Jigger Boiler

Data Collection &

Pre-processing

Set Network

Type &

Configuration

Choose a

Training

Algorithm

Initialize and

Train Network

Analyze

Network

Performance

Implement

Network

Figure 4 implementation procedure of the

proposed neural network prediction model

WSEAS TRANSACTIONS on POWER SYSTEMS
Fitsum Bekele Tilahun,

Ramchandra Bhandari, Menegesha Mamo

E-ISSN: 2224-350X 243 Volume 12, 2017

85% of the full data set, with testing making up the

remaining 15% each. Caution to make each of these

sets representative of the full data set — that the test

sets cover the same region of the input space as the

training set were considered. For this, selections of

each set from the full data set were done.

2.3.2 Choice of Network Architecture

The universally accepted network architecture for

fitting problems is the multilayer perceptron [1-3]. It

was shown in [3] that this standard neural

configuration uses tansig function in the hidden

layers, and linear function in the output layer. This

is because the former function produces outputs

(which are inputs to the next layer) that are centered

near zero, whereas the later function always

produces positive outputs.

 The choice of the optimum number of hidden

units depends on many factors whose interactions

are not easy to understand. These factors are amount

of training data, number of input and output units,

the level of generalization requirement from the

network, type of transfer function and the training

algorithm [9]. Conflicting trends are observed when

the number of hidden units vary i.e. too few leads to

under-fitting while too many results in over-fitting

and slow learning process. However, it is highly

unlikely to use more than two hidden layers for a

standard function approximation problem [3].

 To fix the number of neuron in the hidden

layer, different authors suggest a rule-of thumb from

their experiences. In [10] it is given as

𝑛 = √𝑛𝑖 + 𝑛𝑜 + 𝑎 (31)

Where n is the number of hidden neurons, 𝑛𝑖 and 𝑛𝑜

are number of neurons in input and output and a is a

constant between 1 and 10.

 Another work [11] suggested to use

𝑁ℎ = 𝑁𝑝𝑥√(𝑁𝑖 + 𝑁𝑜) (32)

Where 𝑁ℎ is hidden neuron numbers, 𝑁𝑝 is number

of training samples, 𝑁𝑖&𝑁𝑜 are input and output

neurons.

 The authors strongly believe that the best way is

to try multiple runs for a range of different hidden

layers with different neurons in each layer and

observe the network performance. For the current

work, two hidden layers with ten neurons in each

layer achieved the set performance criterion.

2.3.3 Weight Initialization

ANNs weights should be initialized with small

random values. Since the BP algorithm work on the

weights in a similar fashion, initializing these

weights alike will eventually make all units learn in

the same way [12-14]. Similarly, these small

random values will result in network output that

corresponds to highest weight update [13]. In this

work, effort has been made to make the

performance of the final trained neural network

independent of the choice of initial weight values.

For that several runs of the network for different

initial weight values were performed that has

resulted in similar performance.

2.3.4 Choice of Training Algorithm

For multilayer networks to perform function

approximation, the resilient gradient descent

training algorithm provides a guaranteed

performance minimization of the error function with

relatively fast convergence rate [4, 14, 16]. In this

work, this algorithm was tested to check its validity

for the task at hand.

2.3.5 Stopping Criteria

For the majority of practical neural networks, the

training error never converges identically to zero.

As a result, other criteria for deciding when to stop

the training is generally considered. There are

several methods reported in the literature such as

stooping when the performance index reaches a

certain level, setting a high training iteration

number, training for a fixed iteration then restarting

the training with initial weights from previous

training and stopping when the gradient of the

performance index is sufficiently low [17-18]. For

this work a stopping criterion when either the

performance index is met or when a large number of

iteration reached is implemented for the simple

reason it met the practical requirement of the task.

2.3.6 Post-Training Analysis

Prior to concluding the work, analysis of the trained

network to see if the training was successful is

necessary. A powerful method of doing this is to do

curve fitting for regression between the trained

network outputs and the corresponding targets [3].

For that, we fit a linear function of the form

𝑎𝑞 = 𝑚𝑡𝑞 + 𝑐 + 𝜀𝑞 (33)

where m & c are the slope & offset, respectively, of

the linear function, 𝑡𝑞is a target value, 𝑎𝑞 is a

trained network output, and 𝜀𝑞 is the residual error

of the regression.

The terms in the regression can be computed as

follows:

WSEAS TRANSACTIONS on POWER SYSTEMS
Fitsum Bekele Tilahun,

Ramchandra Bhandari, Menegesha Mamo

E-ISSN: 2224-350X 244 Volume 12, 2017

�̂� =
∑ (𝑡𝑞 − 𝑡̅)

𝑄
𝑞=1 (𝑎𝑞 − �̅�)

∑ (𝑡𝑞 − 𝑡̅)
2𝑄

𝑞=1

 (34)

 �̂� = �̅� − �̂�𝑡̅ (35)

Where,

 �̅� =
1

𝑄
∑ 𝑎𝑞 , 𝑡̅ =

1

𝑄
∑ 𝑡𝑞

𝑄
𝑞=1

𝑄
𝑞=1

 A plot of this fitting to gauge the performance

of the proposed ANNs is discussed in the results

section.

3 Results and Discussions
A Matlab script file for the implementation of

resilient gradient variant of the BP algorithm were

written. This code was run for different learning

rates and varying number of hidden neurons. The

regression coefficient (R) and Mean Square Error

(MSE) were compared. As can be seen from Figure

5 the resilient gradient method shows superior

performance as the complexity of the neural

network increase.

(a)

(b)

Figure 5 effect of learning rate and neuron

number variation on (a) correlation and; (b)

mean square error

Next we will consider performance of the best

resilient configuration. Figure 6 shows the

regression analysis where the solid line represents

the linear regression, the thin dotted line represents

the perfect match, and the circles represent the data

points. From this figure it is possible to see that the

match is good, although not perfect. There are few

points that seem to diverge from the regressed line.

This might rise due to the presence of an incorrect

data point, or because the data is far from other

training points. The latter is the case here since the

data used is not representative of all input space.

Analysis of the scatter plot as shown in Figure 7

clearly shows the case.

Addition of points that span the whole data space

will improve the generalization capability of the

proposed neural network. Additionally, the

correlation coefficient between the estimated and

target values, which is the R value was computed.

Generally, the R value varies from –1 to 1, however

it is should be closer to 1 for prediction applications

of BP algorithm. R=1 means all of the data points

lie exactly on the regression line & R=-1 means they

are randomly scattered away from the regression

line. For this case as can be seen from Figure 6, the

data does not fall exactly on the regression line, but

the variation is very small.

0

0.2

0.4

0.6

0.8

1

10 20 25 50 100

R

Neuron number

Ƞ.1 Ƞ.15 Ƞ.2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

10 20 25 50 100

M
SE

Neuron number

Ƞ.1 Ƞ.15 Ƞ.2

Figure 6 Correlation factor for the optimum

neural model

WSEAS TRANSACTIONS on POWER SYSTEMS
Fitsum Bekele Tilahun,

Ramchandra Bhandari, Menegesha Mamo

E-ISSN: 2224-350X 245 Volume 12, 2017

Figure 7 scatter plot of the training data and the

steam consumption

The MSE values for the best network

configuration are given in Figure 8. As can be seen

from this figure, the error overshoot at the start of

the training and subsequently receded to a stable

lower value. As stated in section 2, the stopping

criterion was based on the mean square error that

minimized the actual target and output of the

network. Although the neural model achieved a

relatively minimum values around 300 iteration,

further increment was done to get better result with

the correlation coefficient. This trade-off is

considered acceptable since the overall neural model

error is significantly low about 0.0674.

Figure 9 gives the final trained neural network

output after a test data was presented. The variation

of neural output is due to variation of daily

production rates of steam consuming machines.

Table 2 summarizes the final result i.e. the steam

consumption rate of each textile machine. For this

the average production value of the machine is

presented to the network as input. The output value

is given in a range because of the random stochastic

nature of steam loss and weight initialization used.

Figure 9 output of trained neural model using

test data

Table 2 final steam consumption estimates

Industrial process Steam consumption (kg/kg)

Bleaching 0.6-0.9

Washing 0.7-1.1

Calendaring 0.8-1.4

Jigger 1.2-4.5

Sizing 7.8-9.0

4 Conclusion
In this research paper, effort has been made to

estimate industrial steam consumption form

machines daily production rates and boiler meter

reading. The neural algorithm used is explained in

detail with the associated practical issues of

implementation. Several simulations run was carried

out in Matlab to arrive at an optimum neural

configuration. Finally real textile factory data was

used for training and test of this final optimized

neural model.

From the simulation results of a Matlab code

implementation, it was found out that the resilient

gradient descent algorithm of an MLP is a valuable

tool for function approximation such as energy use

prediction. However, practical considerations that

relates to pre-processing as well as selection of

representative input data were found to be a

prerequisite before implementation.

Moreover, it was found out that the number of

layers and the amount of neurons in those layers has

a direct influence on the accuracy of the network.

From the experiment it was found out that two

hidden layers and hundred neurons on those layers

has resulted in best performance of the network.

However, the number of neurons in a layer could be

reduced with the availability of more data to train

the network.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0

N
o

rm
al

iz
ed

 s
te

am
 c

o
n

s.

Normalized training data

Washing Calendering

Sizing Jigger

Bleaching

Figure 8 MSE of the optimized neural model

WSEAS TRANSACTIONS on POWER SYSTEMS
Fitsum Bekele Tilahun,

Ramchandra Bhandari, Menegesha Mamo

E-ISSN: 2224-350X 246 Volume 12, 2017

References:

[1] Yu-Rong Zeng, Yi Zeng, Beomjin Choi, Lin

Wang. Multifactor-Influenced Energy

Consumption Forecasting Using Enhanced

Back- propagation Neural Network. Energy,

2017; 127:381-396.

[2] Uzlu E, Kankal M, Akpınar A, Dede T.

Estimates of energy consumption in Turkey

using neural networks with the teaching–

learning-based optimization algorithm. Energy

2014; 75: 295-303.

[3] Martin T. Hagan, Howard B. Demuth. Neural

Network Design 2nd Edtion, 2014.

[4] Alaa Ali Hameed, Bekir Karlik, Mohammad

Shukri Salman. Back-propagation Algorithm

with Variable Adaptive Momentum.

Knowledge-Based Systems,2016; 114:79-87.

[5] C.G. Looney, “Advances in feedforward neural

networks: demystifying knowledge acquiring

black boxes”, IEEE Transactions on Knowledge

and Data Engineering, Volume: 8, Issue: 2,1996

[6] “Energy Audit of Bahir Dar Textile Share

Company, Ethiopia”, Bangalore: The Energy

and Resources Institute; 53 pp., Project Report

No. 2013IB22, 2014

[7] J. Sola, “Importance of input data normalization

for the application of neural networks to

complex industrial problems”, IEEE

Transactions on Nuclear Science, Volume: 44,

Issue: 3, 1997

[8] Zhang Q., Sun S. Weighted Data Normalization

Based on Eigenvalues for Artificial Neural

Network Classification. In: Leung C.S., Lee M.,

Chan J.H. (eds) Neural Information Processing.

ICONIP. Lecture Notes in Computer Science,

Springer, 2009; 5863.

[9] N. Murata, S. Yoshizawa & S. Amari, “Network

information criterion-determining the number of

hidden units for an artificial neural network

model”, IEEE Transactions on Neural

Networks, Volume: 5, Issue: 6, 1994

[10] Saduf Afzal, Mohd. Arif Wani

“Comparative Study of Adaptive Learning Rate

with Momentum and Resilient Back

Propagation Algorithms for Neural Net

Classifier Optimization”

[11] Wahed, M. A “Adaptive learning rate

versus Resilient back propagation for numeral

recognition” Journal of Al-Anbar University for

Pure Science, 94-105,2008

[12] D. Erdogmus. Accurate initialization of

neural network weights by backpropagation of

the desired response. Proceedings of the

International Joint Conference on Neural

Networks, 2003

[13] Go J., Baek B., Lee C. Analyzing Weight

Distribution of Feedforward Neural Networks

and Efficient Weight Initialization. In: Fred A.,

Caelli T.M., Duin R.P.W., Campilho A.C., de

Ridder D. (eds) Structural, Syntactic, and

Statistical Pattern Recognition. Lecture Notes in

Computer Science, Springer, 2004;3138

[14] Weipeng Cao, Xizhao Wang, Zhong Ming,

Jinzhu Gao, A Review on Neural Networks with

Random Weights, Neurocomputing, 2017; In

Press, Corrected Proof — Note to users.

[15] E. Barnard, “Optimization for training

neural nets,” IEEE Trans. on Neural Networks,

vol. 3, no. 2, pp. 232–240, 1992.

[16] T. P. Vogl, J. K. Mangis, A. K. Zigler, W.

T. Zink and D. L. Alkon, “Accelerating the

convergence of the backpropagation method,”

Biological Cybernetics., vol. 59, pp. 256–264,

1988.

[17] Liu, Y., Starzyk, J.A., Zhu, Z.,. Optimized

approximation algorithm in neural networks

without overfitting. IEEE Trans. Neural

Networks 19 (6), 2008; 983–995.

[18] Masoud Yaghinin, Mohammad M.

Khoshraftar, Mehdi Fallahi. A hybrid algorithm

for artificial neural network training.

Engineering Applications of Artificial

Intelligence, 2013:26:293-301.

WSEAS TRANSACTIONS on POWER SYSTEMS
Fitsum Bekele Tilahun,

Ramchandra Bhandari, Menegesha Mamo

E-ISSN: 2224-350X 247 Volume 12, 2017

